Papers
Topics
Authors
Recent
2000 character limit reached

A Geometric Approach to Matrix Ordering

Published 23 May 2011 in cs.DS and cs.DC | (1105.4490v1)

Abstract: We present a recursive way to partition hypergraphs which creates and exploits hypergraph geometry and is suitable for many-core parallel architectures. Such partitionings are then used to bring sparse matrices in a recursive Bordered Block Diagonal form (for processor-oblivious parallel LU decomposition) or recursive Separated Block Diagonal form (for cache-oblivious sparse matrix-vector multiplication). We show that the quality of the obtained partitionings and orderings is competitive by comparing obtained fill-in for LU decomposition with SuperLU (with better results for 8 of the 28 test matrices) and comparing cut sizes for sparse matrix-vector multiplication with Mondriaan (with better results for 4 of the 12 test matrices). The main advantage of the new method is its speed: it is on average 21.6 times faster than Mondriaan.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.