2000 character limit reached
Random fields and the geometry of Wiener space (1105.3839v2)
Published 19 May 2011 in math.PR
Abstract: In this work we consider infinite dimensional extensions of some finite dimensional Gaussian geometric functionals called the Gaussian Minkowski functionals. These functionals appear as coefficients in the probability content of a tube around a convex set $D\subset\mathbb{R}k$ under the standard Gaussian law $N(0,I_{k\times k})$. Using these infinite dimensional extensions, we consider geometric properties of some smooth random fields in the spirit of [Random Fields and Geometry (2007) Springer] that can be expressed in terms of reasonably smooth Wiener functionals.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.