Coloring link diagrams by Alexander quandles (1105.3695v1)
Abstract: In this paper, we study the colorability of link diagrams by the Alexander quandles. We show that if the reduced Alexander polynomial $\Delta_{L}(t)$ is vanishing, then $L$ admits a non-trivial coloring by any non-trivial Alexander quandle $Q$, and that if $\Delta_{L}(t)=1$, then $L$ admits only the trivial coloring by any Alexander quandle $Q$, also show that if $\Delta_{L}(t)\not=0, 1$, then $L$ admits a non-trivial coloring by the Alexander quandle $\Lambda/(\Delta_{L}(t))$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.