First-Exit Times of an Inverse Gaussian Process (1105.1468v3)
Abstract: The first-exit time process of an inverse Gaussian L\'evy process is considered. The one-dimensional distribution functions of the process are obtained. They are not infinitely divisible and the tail probabilities decay exponentially. These distribution functions can also be viewed as distribution functions of supremum of the Brownian motion with drift. The density function is shown to solve a fractional PDE and the result is also generalized to tempered stable subordinators. The subordination of this process to the Brownian motion is considered and the underlying PDE of the subordinated process is obtained. The infinite divisibility of the first-exit time of a $\beta$-stable subordinator is also discussed.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.