Nonstandard methods for bounds in differential polynomial rings
Abstract: Motivated by the problem of the existence of bounds on degrees and orders in checking primality of radical (partial) differential ideals, the nonstandard methods of van den Dries and Schmidt ["Bounds in the theory of polynomial rings over fields. A nonstandard approach.", Inventionnes Mathematicae, 76:77--91, 1984] are here extended to differential polynomial rings over differential fields. Among the standard consequences of this work are: a partial answer to the primality problem, the equivalence of this problem with several others related to the Ritt problem, and the existence of bounds for characteristic sets of minimal prime differential ideals and for the differential Nullstellensatz.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.