Papers
Topics
Authors
Recent
Search
2000 character limit reached

Farey Graphs as Models for Complex Networks

Published 3 May 2011 in cond-mat.stat-mech | (1105.0575v2)

Abstract: Farey sequences of irreducible fractions between 0 and 1 can be related to graph constructions known as Farey graphs. These graphs were first introduced by Matula and Kornerup in 1979 and further studied by Colbourn in 1982 and they have many interesting properties: they are minimally 3-colorable, uniquely Hamiltonian, maximally outerplanar and perfect. In this paper we introduce a simple generation method for a Farey graph family, and we study analytically relevant topological properties: order, size, degree distribution and correlation, clustering, transitivity, diameter and average distance. We show that the graphs are a good model for networks associated with some complex systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.