Action-gradient-minimizing pseudo-orbits and almost-invariant tori (1104.5609v1)
Abstract: Transport in near-integrable, but partially chaotic, $1 1/2$ degree-of-freedom Hamiltonian systems is blocked by invariant tori and is reduced at \emph{almost}-invariant tori, both associated with the invariant tori of a neighboring integrable system. "Almost invariant" tori with rational rotation number can be defined using continuous families of periodic \emph{pseudo-orbits} to foliate the surfaces, while irrational-rotation-number tori can be defined by nesting with sequences of such rational tori. Three definitions of "pseudo-orbit," \emph{action-gradient--minimizing} (AGMin), \emph{quadratic-flux-minimizing} (QFMin) and \emph{ghost} orbits, based on variants of Hamilton's Principle, use different strategies to extremize the action as closely as possible. Equivalent Lagrangian (configuration-space action) and Hamiltonian (phase-space action) formulations, and a new approach to visualizing action-minimizing and minimax orbits based on AGMin pseudo-orbits, are presented.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.