Papers
Topics
Authors
Recent
Search
2000 character limit reached

Action-gradient-minimizing pseudo-orbits and almost-invariant tori

Published 29 Apr 2011 in nlin.CD, physics.flu-dyn, and physics.plasm-ph | (1104.5609v1)

Abstract: Transport in near-integrable, but partially chaotic, $1 1/2$ degree-of-freedom Hamiltonian systems is blocked by invariant tori and is reduced at \emph{almost}-invariant tori, both associated with the invariant tori of a neighboring integrable system. "Almost invariant" tori with rational rotation number can be defined using continuous families of periodic \emph{pseudo-orbits} to foliate the surfaces, while irrational-rotation-number tori can be defined by nesting with sequences of such rational tori. Three definitions of "pseudo-orbit," \emph{action-gradient--minimizing} (AGMin), \emph{quadratic-flux-minimizing} (QFMin) and \emph{ghost} orbits, based on variants of Hamilton's Principle, use different strategies to extremize the action as closely as possible. Equivalent Lagrangian (configuration-space action) and Hamiltonian (phase-space action) formulations, and a new approach to visualizing action-minimizing and minimax orbits based on AGMin pseudo-orbits, are presented.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.