Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
Gemini 2.5 Pro Premium
26 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
10 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
2000 character limit reached

Self-similarity in the Kepler-Heisenberg problem (1912.12375v2)

Published 28 Dec 2019 in math.DS, cs.NA, math-ph, math.DG, math.MP, and math.NA

Abstract: The Kepler-Heisenberg problem is that of determining the motion of a planet around a sun in the Heisenberg group, thought of as a three-dimensional sub-Riemannian manifold. The sub-Riemannian Hamiltonian provides the kinetic energy, and the gravitational potential is given by the fundamental solution to the sub-Laplacian. The dynamics are at least partially integrable, possessing two first integrals as well as a dilational momentum which is conserved by orbits with zero energy. The system is known to admit closed orbits of any rational rotation number, which all lie within the fundamental zero-energy integrable subsystem. Here we demonstrate that, under mild conditions, zero-energy orbits are self-similar. Consequently we find that these zero-energy orbits stratify into three families: future collision, past collision, and quasi-periodicity without collision. If a collision occurs, it occurs in finite time.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.