Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the classification of polynomial differential operators (1104.4525v2)

Published 23 Apr 2011 in math.CA

Abstract: This paper gives a classification of first order polynomial differential operators of form $\mathscr{X} = X_1(x_1,x_2)\delta_1 + X_2(x_1,x_2)\delta_2$, $(\delta_i = \partial/\partial x_i)$. The classification is given through the order of an operator that is defined in this paper. Let $X=\mathscr{X}y$ to be the differential polynomial associated with $\mathscr{X}$, the order of $\mathscr{X}$, $\mathrm{ord}(\mathscr{X})$, is defined as the order of a differential ideal $\Lambda$ of differential polynomials that is a nontrivial expansion of the ideal ${X}$ and with the lowest order. In this paper, we prove that there are only four possible values for the order of a differential operator, 0, 1, 2, 3, or $\infty$. Furthermore, when the order is finite, the expansion $\Lambda$ is generated by $X$ and a differential polynomial $A$, which can be obtained through a rational solution of a partial differential equation that is given explicitly in this paper. When the order is infinite, the expansion $\Lambda$ is just the unit ideal. In additional, if, and only if, the order of $\mathscr{X}$ is 0, 1, or 2, the polynomial differential equation associating with $\mathscr{X}$ has Liouvillian first integrals. Examples for each class of differential operators are given at the end of this paper.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.