Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Newman Conjecture

Published 21 Apr 2011 in math.PR | (1104.4180v1)

Abstract: We consider a random field, defined on an integer-valued d-dimensional lattice, with covariance function satisfying a condition more general than summability. Such condition appeared in the well-known Newman's conjecture concerning the central limit theorem (CLT) for stationary associated random fields. As was demonstrated by Herrndorf and Shashkin, the conjecture fails already for d=1. In the present paper, we show the validity of modified conjecture leaving intact the mentioned condition on covariance function. Thus we establish, for any positive integer d, a criterion of the CLT validity for the wider class of positively associated stationary fields. The uniform integrability for the squares of normalized partial sums, taken over growing parallelepipeds or cubes, plays the key role in deriving their asymptotic normality. So our result extends the Lewis theorem proved for sequences of random variables. A representation of variances of partial sums of a field using the slowly varying functions in several arguments is employed in essential way.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.