The nearest neighbor recurrence coefficients for multiple orthogonal polynomials (1104.3778v1)
Abstract: We show that multiple orthogonal polynomials for r measures $(\mu_1,...,\mu_r)$ satisfy a system of linear recurrence relations only involving nearest neighbor multi-indices $\vec{n}\pm \vec{e}_j$, where $\vec{e}_j$ are the standard unit vectors. The recurrence coefficients are not arbitrary but satisfy a system of partial difference equations with boundary values given by the recurrence coefficients of the orthogonal polynomials with each of measures $\mu_j$. We show how the Christoffel-Darboux formula for multiple orthogonal polynomials can be obtained easily using this information. We give explicit examples involving multiple Hermite, Charlier, Laguerre, and Jacobi polynomials.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.