2000 character limit reached
Bivariate identities for values of the Hurwitz zeta function and supercongruences (1104.3659v2)
Published 19 Apr 2011 in math.NT and math.CO
Abstract: In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher's identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function. We also get an extension of the bivariate identity of Cohen to values of the Hurwitz zeta function. The main tool we use here is a construction of new Markov-WZ pairs. As application of our results, we prove several conjectures on supercongruences proposed by J. Guillera, W. Zudilin, and Z.-W. Sun.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.