Spectral estimates for the Schrödinger operators with sparse potentials on graphs (1104.3455v1)
Abstract: The construction of "sparse potentials", suggested in \cite{RS09} for the lattice $\Zd,\ d>2$, is extended to a wide class of combinatorial and metric graphs whose global dimension is a number $D>2$. For the Schr\"odinger operator $-\D-\a V$ on such graphs, with a sparse potential $V$, we study the behavior (as $\a\to\infty$) of the number $N_-(-\D-\a V)$ of negative eigenvalues of $-\D-\a V$. We show that by means of sparse potentials one can realize any prescribed asymptotic behavior of $N_-(-\D-\a V)$ under very mild regularity assumptions. A similar construction works also for the lattice $\Z2$, where D=2.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.