Load-Balancing Spatially Located Computations using Rectangular Partitions (1104.2566v1)
Abstract: Distributing spatially located heterogeneous workloads is an important problem in parallel scientific computing. We investigate the problem of partitioning such workloads (represented as a matrix of non-negative integers) into rectangles, such that the load of the most loaded rectangle (processor) is minimized. Since finding the optimal arbitrary rectangle-based partition is an NP-hard problem, we investigate particular classes of solutions: rectilinear, jagged and hierarchical. We present a new class of solutions called m-way jagged partitions, propose new optimal algorithms for m-way jagged partitions and hierarchical partitions, propose new heuristic algorithms, and provide worst case performance analyses for some existing and new heuristics. Moreover, the algorithms are tested in simulation on a wide set of instances. Results show that two of the algorithms we introduce lead to a much better load balance than the state-of-the-art algorithms. We also show how to design a two-phase algorithm that reaches different time/quality tradeoff.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.