Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Sums of magnetic eigenvalues are maximal on rotationally symmetric domains (1104.1272v1)

Published 7 Apr 2011 in math.AP, math-ph, and math.MP

Abstract: The sum of the first n energy levels of the planar Laplacian with constant magnetic field of given total flux is shown to be maximal among triangles for the equilateral triangle, under normalization of the ratio (moment of inertia)/(area)3 on the domain. The result holds for both Dirichlet and Neumann boundary conditions, with an analogue for Robin (or de Gennes) boundary conditions too. The square similarly maximizes the eigenvalue sum among parallelograms, and the disk maximizes among ellipses. More generally, a domain with rotational symmetry will maximize the magnetic eigenvalue sum among all linear images of that domain. These results are new even for the ground state energy (n=1).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube