Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Slope Heuristics in Heteroscedastic Regression (1104.1050v2)

Published 6 Apr 2011 in math.ST and stat.TH

Abstract: We consider the estimation of a regression function with random design and heteroscedastic noise in a nonparametric setting. More precisely, we address the problem of characterizing the optimal penalty when the regression function is estimated by using a penalized least-squares model selection method. In this context, we show the existence of a minimal penalty, defined to be the maximum level of penalization under which the model selection procedure totally misbehaves. The optimal penalty is shown to be twice the minimal one and to satisfy a non-asymptotic pathwise oracle inequality with leading constant almost one. Finally, the ideal penalty being unknown in general, we propose a hold-out penalization procedure and show that the latter is asymptotically optimal.

Summary

We haven't generated a summary for this paper yet.