Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

The Probability Distribution for Non-Gaussianity Estimators (1104.0930v1)

Published 5 Apr 2011 in astro-ph.CO

Abstract: One of the principle efforts in cosmic microwave background (CMB) research is measurement of the parameter fnl that quantifies the departure from Gaussianity in a large class of non-minimal inflationary (and other) models. Estimators for fnl are composed of a sum of products of the temperatures in three different pixels in the CMB map. Since the number ~Npix2 of terms in this sum exceeds the number Npix of measurements, these ~Npix2 terms cannot be statistically independent. Therefore, the central-limit theorem does not necessarily apply, and the probability distribution function (PDF) for the fnl estimator does not necessarily approach a Gaussian distribution for N_pix >> 1. Although the variance of the estimators is known, the significance of a measurement of fnl depends on knowledge of the full shape of its PDF. Here we use Monte Carlo realizations of CMB maps to determine the PDF for two minimum-variance estimators: the standard estimator, constructed under the null hypothesis (fnl=0), and an improved estimator with a smaller variance for |fnl| > 0. While the PDF for the null-hypothesis estimator is very nearly Gaussian when the true value of fnl is zero, the PDF becomes significantly non-Gaussian when |fnl| > 0. In this case we find that the PDF for the null-hypothesis estimator fnl_hat is skewed, with a long non-Gaussian tail at fnl_hat > |fnl| and less probability at fnl_hat < |fnl| than in the Gaussian case. We provide an analytic fit to these PDFs. On the other hand, we find that the PDF for the improved estimator is nearly Gaussian for observationally allowed values of fnl. We discuss briefly the implications for trispectrum (and other higher-order correlation) estimators.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube