Pseudo-abelian varieties (1104.0856v3)
Abstract: Chevalley's theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field k to be a smooth connected k-group in which every smooth connected affine normal k-subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension of a pseudo-abelian variety by a smooth connected affine group, in a unique way. We work out much of the structure of pseudo-abelian varieties. These groups are closely related to unipotent groups in characteristic p and to pseudo-reductive groups as studied by Tits and Conrad-Gabber-Prasad. Many properties of abelian varieties such as the Mordell-Weil theorem extend to pseudo-abelian varieties. Finally, we conjecture a description of Ext2(G_a,G_m) over any field by generators and relations, in the spirit of the Milnor conjecture.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.