Papers
Topics
Authors
Recent
Search
2000 character limit reached

Legendrian and transverse cables of positive torus knots

Published 4 Apr 2011 in math.GT and math.SG | (1104.0550v1)

Abstract: In this paper we classify Legendrian and transverse knots in the knot types obtained from positive torus knots by cabling. This classification allows us to demonstrate several new phenomena. Specifically, we show there are knot types that have non-destabilizable Legendrian representatives whose Thurston-Bennequin invariant is arbitrarily far from maximal. We also exhibit Legendrian knots requiring arbitrarily many stabilizations before they become Legendrian isotopic. Similar new phenomena are observed for transverse knots. To achieve these results we define and study "partially thickenable" tori, which allow us to completely classify solid tori representing positive torus knots.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.