Papers
Topics
Authors
Recent
2000 character limit reached

$L^p$ Error Estimates for Approximation by Sobolev Splines and Wendland Functions on $\mathbb{R}^d$

Published 30 Mar 2011 in math.CA | (1103.5997v2)

Abstract: It is known that a Green's function-type condition may be used to derive rates for approximation by radial basis functions (RBFs). In this paper, we introduce a method for obtaining rates for approximation by functions which can be convolved with a finite Borel measure to form a Green's function. Following a description of the method, rates will be found for two classes of RBFs. Specifically, rates will be found for the Sobolev splines, which are Green's functions, and the perturbation technique will then be employed to determine rates for approximation by Wendland functions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.