Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A homotopy colimit theorem for diagrams of braided monoidal categories (1103.4485v1)

Published 23 Mar 2011 in math.CT

Abstract: Thomason's Homotopy Colimit Theorem has been extended to bicategories and this extension can be adapted, through the delooping principle, to a corresponding theorem for diagrams of monoidal categories. In this version, we show that the homotopy type of the diagram can be also represented by a genuine simplicial set nerve associated with it. This suggests the study of a homotopy colimit theorem, for diagrams $\b$ of braided monoidal categories, by means of a simplicial set {\em nerve of the diagram}. We prove that it is weak homotopy equivalent to the homotopy colimit of the diagram, of simplicial sets, obtained from composing $\b$ with the geometric nerve functor of braided monoidal categories.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.