Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Stability of Sequential Monte Carlo Methods in High Dimensions (1103.3965v2)

Published 21 Mar 2011 in stat.CO

Abstract: We investigate the stability of a Sequential Monte Carlo (SMC) method applied to the problem of sampling from a target distribution on $\mathbb{R}d$ for large $d$. It is well known that using a single importance sampling step one produces an approximation for the target that deteriorates as the dimension $d$ increases, unless the number of Monte Carlo samples $N$ increases at an exponential rate in $d$. We show that this degeneracy can be avoided by introducing a sequence of artificial targets, starting from a `simple' density and moving to the one of interest, using an SMC method to sample from the sequence. Using this class of SMC methods with a fixed number of samples, one can produce an approximation for which the effective sample size (ESS) converges to a random variable $\varepsilon_N$ as $d\rightarrow\infty$ with $1<\varepsilon_{N}<N$. The convergence is achieved with a computational cost proportional to $Nd2$. If $\varepsilon_N\ll N$, we can raise its value by introducing a number of resampling steps, say $m$ (where $m$ is independent of $d$). In this case, ESS converges to a random variable $\varepsilon_{N,m}$ as $d\rightarrow\infty$ and $\lim_{m\to\infty}\varepsilon_{N,m}=N$. Also, we show that the Monte Carlo error for estimating a fixed dimensional marginal expectation is of order $\frac{1}{\sqrt{N}}$ uniformly in $d$. The results imply that, in high dimensions, SMC algorithms can efficiently control the variability of the importance sampling weights and estimate fixed dimensional marginals at a cost which is less than exponential in $d$ and indicate that, in high dimensions, resampling leads to a reduction in the Monte Carlo error and increase in the ESS.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.