Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Further solutions of fractional reaction-diffusion equations in terms of the H-function (1102.5498v1)

Published 27 Feb 2011 in cond-mat.stat-mech and math.CA

Abstract: This paper is a continuation of our earlier paper in which we have derived the solution of an unified fractional reaction-diffusion equation associated with the Caputo derivative as the time-derivative and the Riesz-Feller fractional derivative as the space-derivative. In this paper, we consider an unified reaction-diffusion equation with Riemann-Liouville fractional derivative as the time-derivative and Riesz-Feller derivative as the space-derivative. The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of the H-function. The results derived are of general character and include the results investigated earlier by Kilbas et al. (2006a), Saxena et al. (2006c), and Mathai et al. (2010). The main result is given in the form of a theorem. A number of interesting special cases of the theorem are also given as corollaries.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.