Papers
Topics
Authors
Recent
2000 character limit reached

On the edge connectivity of direct products with dense graphs

Published 25 Feb 2011 in math.CO | (1102.5181v1)

Abstract: Let $\kappa'(G)$ be the edge connectivity of $G$ and $G\times H$ the direct product of $G$ and $H$. Let $H$ be an arbitrary dense graph with minimal degree $\delta(H)>|H|/2$. We prove that for any graph $G$, $\kappa'(G\times H)=\textup{min}{2\kappa'(G)e(H),\delta(G)\delta(H)}$, where $e(H)$ denotes the number of edges in $H$. In addition, the structure of minimum edge cuts is described. As an application, we present a necessary and sufficient condition for $G\times K_n(n\ge3)$ to be super edge connected.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.