Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probability Based Clustering for Document and User Properties (1102.3865v1)

Published 18 Feb 2011 in cs.HC and cs.IR

Abstract: Information Retrieval systems can be improved by exploiting context information such as user and document features. This article presents a model based on overlapping probabilistic or fuzzy clusters for such features. The model is applied within a fusion method which linearly combines several retrieval systems. The fusion is based on weights for the different retrieval systems which are learned by exploiting relevance feedback information. This calculation can be improved by maintaining a model for each document and user cluster. That way, the optimal retrieval system for each document or user type can be identified and applied. The extension presented in this article allows overlapping, probabilistic clusters of features to further refine the process.

Summary

We haven't generated a summary for this paper yet.