Papers
Topics
Authors
Recent
Search
2000 character limit reached

Matrix completion with column manipulation: Near-optimal sample-robustness-rank tradeoffs

Published 10 Feb 2011 in stat.ML, cs.IT, and math.IT | (1102.2254v2)

Abstract: This paper considers the problem of matrix completion when some number of the columns are completely and arbitrarily corrupted, potentially by a malicious adversary. It is well-known that standard algorithms for matrix completion can return arbitrarily poor results, if even a single column is corrupted. One direct application comes from robust collaborative filtering. Here, some number of users are so-called manipulators who try to skew the predictions of the algorithm by calibrating their inputs to the system. In this paper, we develop an efficient algorithm for this problem based on a combination of a trimming procedure and a convex program that minimizes the nuclear norm and the $\ell_{1,2}$ norm. Our theoretical results show that given a vanishing fraction of observed entries, it is nevertheless possible to complete the underlying matrix even when the number of corrupted columns grows. Significantly, our results hold without any assumptions on the locations or values of the observed entries of the manipulated columns. Moreover, we show by an information-theoretic argument that our guarantees are nearly optimal in terms of the fraction of sampled entries on the authentic columns, the fraction of corrupted columns, and the rank of the underlying matrix. Our results therefore sharply characterize the tradeoffs between sample, robustness and rank in matrix completion.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.