Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Key Polynomials (1102.1906v4)

Published 9 Feb 2011 in math.AG and math.AC

Abstract: The notion of key polynomials was first introduced in 1936 by S. Maclane in the case of discrete rank 1 valuations. . Let K -> L be a field extension and {\nu} a valuation of K. The original motivation for introducing key polynomials was the problem of describing all the extensions {\mu} of {\nu} to L. Take a valuation {\mu} of L extending the valuation {\nu}. In the case when {\nu} is discrete of rank 1 and L is a simple algebraic extension of K Maclane introduced the notions of key polynomials for {\mu} and augmented valuations and proved that {\mu} is obtained as a limit of a family of augmented valuations on the polynomial ring K[x]. In a series of papers, M. Vaqui\'e generalized MacLane's notion of key polynomials to the case of arbitrary valuations {\nu} (that is, valuations which are not necessarily discrete of rank 1). In the paper Valuations in algebraic field extensions, published in the Journal of Algebra in 2007, F.J. Herrera Govantes, M.A. Olalla Acosta and M. Spivakovsky develop their own notion of key polynomials for extensions (K, {\nu}) -> (L, {\mu}) of valued fields, where {\nu} is of archimedian rank 1 (not necessarily discrete) and give an explicit description of the limit key polynomials. Our purpose in this paper is to clarify the relationship between the two notions of key polynomials already developed by vaqui\'e and by F.J. Herrera Govantes, M.A. Olalla Acosta and M. Spivakovsky.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.