Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Characterizations of Core Imputations of Matching and $b$-Matching Games (2202.00619v12)

Published 1 Feb 2022 in cs.GT, cs.DS, and econ.TH

Abstract: We give new characterizations of core imputations for the following games: * The assignment game. * Concurrent games, i.e., general graph matching games having non-empty core. * The unconstrained bipartite $b$-matching game (edges can be matched multiple times). * The constrained bipartite $b$-matching game (edges can be matched at most once). The classic paper of Shapley and Shubik \cite{Shapley1971assignment} showed that core imputations of the assignment game are precisely optimal solutions to the dual of the LP-relaxation of the game. Building on this, Deng et al. \cite{Deng1999algorithms} gave a general framework which yields analogous characterizations for several fundamental combinatorial games. Interestingly enough, their framework does not apply to the last two games stated above. In turn, we show that some of the core imputations of these games correspond to optimal dual solutions and others do not. This leads to the tantalizing question of understanding the origins of the latter. We also present new characterizations of the profits accrued by agents and teams in core imputations of the first two games. Our characterization for the first game is stronger than that for the second; the underlying reason is that the characterization of vertices of the Birkhoff polytope is stronger than that of the Balinski polytope.

Citations (5)

Summary

We haven't generated a summary for this paper yet.