Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Axioms for the coincidence index of maps between manifolds of the same dimension (1102.1223v1)

Published 7 Feb 2011 in math.AT and math.GN

Abstract: We study the coincidence theory of maps between two manifolds of the same dimension from an axiomatic viewpoint. First we look at coincidences of maps between manifolds where one of the maps is orientation true, and give a set of axioms such that characterizes the local index (which is an integer valued function). Then we consider coincidence theory for arbitrary pairs of maps between two manifolds. Similarly we provide a set of axioms which characterize the local index, which in this case is a function with values in $\Z\oplus \Z_2$. We also show in each setting that the group of values for the index (either $\Z$ or $\Z\oplus \Z_2$) is determined by the axioms. Finally, for the general case of coincidence theory for arbitrary pairs of maps between two manifolds we provide a set of axioms which charaterize the local Reidemeister trace which is an element of an abelian group which depends on the pair of functions. These results extend known results for coincidences between orientable differentiable manifolds.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.