Multi-Parameter Tikhonov Regularization
Abstract: We study multi-parameter Tikhonov regularization, i.e., with multiple penalties. Such models are useful when the sought-for solution exhibits several distinct features simultaneously. Two choice rules, i.e., discrepancy principle and balancing principle, are studied for choosing an appropriate (vector-valued) regularization parameter, and some theoretical results are presented. In particular, the consistency of the discrepancy principle as well as convergence rate are established, and an a posteriori error estimate for the balancing principle is established. Also two fixed point algorithms are proposed for computing the regularization parameter by the latter rule. Numerical results for several nonsmooth multi-parameter models are presented, which show clearly their superior performance over their single-parameter counterparts.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.