2000 character limit reached
Analysis of Hamilton-Jacobi-Bellman equations arising in stochastic singular control
Published 5 Feb 2011 in math.AP | (1102.1109v3)
Abstract: We study the partial differential equation max{Lu - f, H(Du)}=0 where u is the unknown function, L is a second-order elliptic operator, f is a given smooth function and H is a convex function. This is a model equation for Hamilton-Jacobi-Bellman equations arising in stochastic singular control. We establish the existence of a unique viscosity solution of the Dirichlet problem that has a Holder continuous gradient. We also show that if H is uniformly convex, the gradient of this solution is Lipschitz continuous.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.