Papers
Topics
Authors
Recent
Search
2000 character limit reached

Two Dimensional Incompressible Ideal Flow Around a Small Curve

Published 4 Feb 2011 in math.AP | (1102.0843v1)

Abstract: We study the asymptotic behavior of solutions of the two dimensional incompressible Euler equations in the exterior of a curve when the curve shrinks to a point. This work links two previous results: [Iftimie, Lopes Filho and Nussenzveig Lopes, Two Dimensional Incompressible Ideal Flow Around a Small Obstacle, Comm. PDE, 28 (2003), 349-379] and [Lacave, Two Dimensional Incompressible Ideal Flow Around a Thin Obstacle Tending to a Curve, Ann. IHP, Anl, 26 (2009), 1121-1148]. The second goal of this work is to complete the previous article, in defining the way the obstacles shrink to a curve. In particular, we give geometric properties for domain convergences in order that the limit flow be a solution of Euler equations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.