PDEs satisfied by extreme eigenvalues distributions of GUE and LUE (1102.0402v1)
Abstract: In this paper we study, $\textsf{Prob}(n,a,b),$ the probability that all the eigenvalues of finite $n$ unitary ensembles lie in the interval $(a,b)$. This is identical to the probability that the largest eigenvalue is less than $b$ and the smallest eigenvalue is greater than $a$. It is shown that a quantity allied to $\textsf{Prob}(n,a,b)$, namely, $$ H_n(a,b):=\left[\frac{\partial}{\partial a}+\frac{\partial}{\partial b}\right]\ln\textsf{Prob}(n,a,b),$$ in the Gaussian Unitary Ensemble (GUE) and $$ H_n(a,b):=\left[a\frac{\partial}{\partial a}+b\frac{\partial}{\partial b}\right]\ln \textsf{Prob}(n,a,b),$$ in the Laguerre Unitary Ensemble (LUE) satisfy certain nonlinear partial differential equations for fixed $n$, interpreting $H_n(a,b)$ as a function of $a$ and $b$. These partial differential equations maybe considered as two variable generalizations of a Painlev\'{e} IV and a Painlev\'{e} V system, respectively. As an application of our result, we give an analytic proof that the extreme eigenvalues of the GUE and the LUE, when suitably centered and scaled, are asymptotically independent.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.