Papers
Topics
Authors
Recent
Search
2000 character limit reached

Co-existence in the two-dimensional May-Leonard model with random rates

Published 25 Jan 2011 in q-bio.PE and cond-mat.stat-mech | (1101.4963v4)

Abstract: We employ Monte Carlo simulations to numerically study the temporal evolution and transient oscillations of the population densities, the associated frequency power spectra, and the spatial correlation functions in the (quasi-)steady state in two-dimensional stochastic May--Leonard models of mobile individuals, allowing for particle exchanges with nearest-neighbors and hopping onto empty sites. We therefore consider a class of four-state three-species cyclic predator-prey models whose total particle number is not conserved. We demonstrate that quenched disorder in either the reaction or in the mobility rates hardly impacts the dynamical evolution, the emergence and structure of spiral patterns, or the mean extinction time in this system. We also show that direct particle pair exchange processes promote the formation of regular spiral structures. Moreover, upon increasing the rates of mobility, we observe a remarkable change in the extinction properties in the May--Leonard system (for small system sizes): (1) As the mobility rate exceeds a threshold that separates a species coexistence (quasi-)steady state from an absorbing state, the mean extinction time as function of system size N crosses over from a functional form ~ e{cN} / N (where c is a constant) to a linear dependence; (2) the measured histogram of extinction times displays a corresponding crossover from an (approximately) exponential to a Gaussian distribution. The latter results are found to hold true also when the mobility rates are randomly distributed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.