Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries (1101.3590v5)

Published 19 Jan 2011 in math.DG and math.AP

Abstract: Let $\M$ be a smooth connected manifold endowed with a smooth measure $\mu$ and a smooth locally subelliptic diffusion operator $L$ satisfying $L1=0$, and which is symmetric with respect to $\mu$. Associated with $L$ one has \textit{le carr\'e du champ} $\Gamma$ and a canonical distance $d$, with respect to which we suppose that $(M,d)$ be complete. We assume that $\M$ is also equipped with another first-order differential bilinear form $\GammaZ$ and we assume that $\Gamma$ and $\GammaZ$ satisfy the Hypothesis below. With these forms we introduce in \eqref{cdi} below a generalization of the curvature-dimension inequality from Riemannian geometry, see Definition \ref{D:cdi}. In our main results we prove that, using solely \eqref{cdi}, one can develop a theory which parallels the celebrated works of Yau, and Li-Yau on complete manifolds with Ricci bounded from below. We also obtain an analogue of the Bonnet-Myers theorem. In Section \ref{S:appendix} we construct large classes of sub-Riemannian manifolds with transverse symmetries which satisfy the generalized curvature-dimension inequality \eqref{cdi}. Such classes include all Sasakian manifolds whose horizontal Webster-Tanaka-Ricci curvature is bounded from below, all Carnot groups with step two, and wide subclasses of principal bundles over Riemannian manifolds whose Ricci curvature is bounded from below.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.