Thermodynamic systems as extremal hypersurfaces (1101.3359v1)
Abstract: We apply variational principles in the context of geometrothermodynamics. The thermodynamic phase space ${\cal T}$ and the space of equilibrium states ${\cal E}$ turn out to be described by Riemannian metrics which are invariant with respect to Legendre transformations and satisfy the differential equations following from the variation of a Nambu-Goto-like action. This implies that the volume element of ${\cal E}$ is an extremal and that ${\cal E}$ and ${\cal T}$ are related by an embedding harmonic map. We explore the physical meaning of geodesic curves in ${\cal E}$ as describing quasi-static processes that connect different equilibrium states. We present a Legendre invariant metric which is flat (curved) in the case of an ideal (van der Waals) gas and satisfies Nambu-Goto equations. The method is used to derive some new solutions which could represent particular thermodynamic systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.