Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Comments on the classification of the finite subgroups of SU(3) (1101.2308v3)

Published 12 Jan 2011 in math-ph, hep-ph, hep-th, and math.MP

Abstract: Many finite subgroups of SU(3) are commonly used in particle physics. The classification of the finite subgroups of SU(3) began with the work of H.F. Blichfeldt at the beginning of the 20th century. In Blichfeldt's work the two series (C) and (D) of finite subgroups of SU(3) are defined. While the group series Delta(3n2) and Delta(6n2) (which are subseries of (C) and (D), respectively) have been intensively studied, there is not much knowledge about the group series (C) and (D). In this work we will show that (C) and (D) have the structures (C) \cong (Z_m x Z_m') \rtimes Z_3 and (D) \cong (Z_n x Z_n') \rtimes S_3, respectively. Furthermore we will show that, while the (C)-groups can be interpreted as irreducible representations of Delta(3n2), the (D)-groups can in general not be interpreted as irreducible representations of Delta(6n2).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.