Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonscattering solutions to the $L^{2}$-supercritical NLS Equations (1101.2271v2)

Published 12 Jan 2011 in math.AP

Abstract: We investigate the nonlinear Schr\"{o}dinger equation $iu_{t}+\Delta u+|u|{p-1}u=0$ with $1+\frac{4}{N}<p\<1+\frac{4}{N-2}$ (when $N=1, 2$, $1+\frac{4}{N}<p<\infty$) in energy space $H^1$ and study the divergent property of infinite-variance and nonradial solutions. If $M(u)^{\frac{1-s_{c}}{s_{c}}}E(u)<M(Q)^{\frac{1-s_{c}}{s_{c}}}E(Q)$ and $\|u_{0}\|_{2}^{\frac{1-s_{c}}{s_{c}}}\|\nabla u_{0}\|_{2}>|Q|{2}{\frac{1-s{c}}{s_{c}}}|\nabla Q|{2},$ then either $u(t)$~blows up in finite forward time, or $u(t)$ exists globally for positive time and there exists a time sequence $t{n}\rightarrow+\infty$ such that $|\nabla u(t_{n})|_{2}\rightarrow+\infty.$ Here $Q$ is the ground state solution of $-Q+\Delta Q+|Q|{p-1}Q=0.$ A similar result holds for negative time. This extend the result of the 3D cubic Schr\"{o}dinger equation in \cite{holmer10} to the general mass-supercritical and energy-subcritical case .

Summary

We haven't generated a summary for this paper yet.