Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Some noncommutative projective surfaces of GK-dimension 4 (1101.0737v2)

Published 4 Jan 2011 in math.RA

Abstract: We construct a family of connected graded domains of GK-dimension 4 that are birational to P2, and show that the general member of this family is noetherian. This disproves a conjecture of the first author and Stafford. The algebras we construct are Koszul and have global dimension 4. They fail to be Artin-Schelter Gorenstein, however, showing that a theorem of Zhang and Stephenson for dimension 3 algebras does not extend to dimension 4. The Auslander-Buchsbaum formula also fails to hold for our family. The algebras can be obtained as global sections of a certain quasicoherent graded sheaf on P1xP1, and our key technique is to work with this sheaf. In contrast to all previously known examples of birationally commutative graded domains, the graded pieces of the sheaf fail to be ample in the sense of Van den Bergh. Our results thus require significantly new techniques.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.