Topological Aspects of Differential Chains (1101.0383v1)
Abstract: In this paper we investigate the topological properties of the space of differential chains 'B(U) defined on an open subset U of a Riemannian manifold M. We show that 'B(U) is not generally reflexive, identifying a fundamental difference between currents and differential chains. We also give several new brief (though non-constructive) definitions of the space 'B(U), and prove that it is a separable ultrabornological (DF)-space. Differential chains are closed under dual versions of fundamental operators of the Cartan calculus on differential forms. The space has good properties some of which are not exhibited by currents B'(U) or D'(U). For example, chains supported in finitely many points are dense in 'B(U) for all open U in M, but not generally in the strong dual topology of B'(U).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.