Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 49 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Vulnerability Analysis for Complex Networks Using Aggressive Abstraction (1012.5990v1)

Published 29 Dec 2010 in math.DS

Abstract: Large, complex networks are ubiquitous in nature and society, and there is great interest in developing rigorous, scalable methods for identifying and characterizing their vulnerabilities. This paper presents an approach for analyzing the dynamics of complex networks in which the network of interest is first abstracted to a much simpler, but mathematically equivalent, representation, the required analysis is performed on the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit vulnerability-preserving, finite state abstractions, and develop efficient algorithms for computing these abstractions. We then propose a vulnerability analysis methodology which combines these finite state abstractions with formal analytics from theoretical computer science to yield a comprehensive vulnerability analysis process for networks of realworld scale and complexity. The potential of the proposed approach is illustrated with a case study involving a realistic electric power grid model and also with brief discussions of biological and social network examples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.