Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Fast Frequency-Domain Algorithm for Gravitational Self-Force: I, Circular Orbits in Schwarzschild Spacetime

Published 29 Dec 2010 in gr-qc | (1012.5860v2)

Abstract: Fast, reliable orbital evolutions of compact objects around massive black holes will be needed as input for gravitational wave search algorithms in the data stream generated by the planned Laser Interferometer Space Antenna (LISA). Currently, the state of the art is a time-domain code by [Phys. Rev. D{\bf 81}, 084021, (2010)] that computes the gravitational self-force on a point-particle in an eccentric orbit around a Schwarzschild black hole. Currently, time-domain codes take up to a few days to compute just one point in parameter space. In a series of articles, we advocate the use of a frequency-domain approach to the problem of gravitational self-force (GSF) with the ultimate goal of orbital evolution in mind. Here, we compute the GSF for a particle in a circular orbit in Schwarzschild spacetime. We solve the linearized Einstein equations for the metric perturbation in Lorenz gauge. Our frequency-domain code reproduces the time-domain results for the GSF up to $\sim 1000$ times faster for small orbital radii. In forthcoming companion papers, we will generalize our frequency-domain methods to include bound (eccentric) orbits in Schwarzschild and (eventually) Kerr spacetimes for computing the GSF, where we will employ the method of extended homogeneous solutions [Phys. Rev. D {\bf 78}, 084021 (2008)].

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.