2000 character limit reached
Computationally Efficient Modulation Level Classification Based on Probability Distribution Distance Functions (1012.5327v3)
Published 24 Dec 2010 in cs.IT, cs.PF, math.IT, and stat.ML
Abstract: We present a novel modulation level classification (MLC) method based on probability distribution distance functions. The proposed method uses modified Kuiper and Kolmogorov-Smirnov distances to achieve low computational complexity and outperforms the state of the art methods based on cumulants and goodness-of-fit tests. We derive the theoretical performance of the proposed MLC method and verify it via simulations. The best classification accuracy, under AWGN with SNR mismatch and phase jitter, is achieved with the proposed MLC method using Kuiper distances.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.