Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

The Fourier transform of thick distributions (1909.03945v2)

Published 9 Sep 2019 in math.FA

Abstract: We first construct a space $\mathcal{W}\left( \mathbb{R}{\text{c}} {n}\right) $ whose elements are test functions defined in $\mathbb{R} _{\text{c}}{n}=\mathbb{R}{n}\cup\left{ \mathbf{\infty}\right} ,$ the one point compactification of $\mathbb{R}{n},$ that have a thick expansion at infinity of special logarithmic type, and its dual space $\mathcal{W}{\prime }\left( \mathbb{R}{\text{c}}{n}\right) ,$ the space of $sl-$thick distributions. We show that there is a canonical projection of $\mathcal{W} {\prime}\left( \mathbb{R}{\text{c}}{n}\right) $ onto $\mathcal{S} {\prime}\left( \mathbb{R}{n}\right).$ We study several $sl-$thick distributions and consider operations in $\mathcal{W}{\prime}\left( \mathbb{R}{\text{c}}{n}\right).$ We define and study the Fourier transform of thick test functions of $\mathcal{S}{\ast}\left( \mathbb{R}{n}\right) $ and thick tempered distributions of $\mathcal{S}{\ast}{\prime}\left( \mathbb{R}{n}\right).$ We construct isomorphisms [ \mathcal{F}{\ast}:\mathcal{S}{\ast}{\prime}\left( \mathbb{R}{n}\right) \longrightarrow\mathcal{W}{\prime}\left( \mathbb{R}{\text{c}}{n}\right) \,, ] [ \mathcal{F}{\ast}:\mathcal{W}{\prime}\left( \mathbb{R}{\text{c}} {n}\right) \longrightarrow\mathcal{S}{\ast}{\prime}\left( \mathbb{R} {n}\right) \,, ] that extend the Fourier transform of tempered distributions, namely, $\Pi\mathcal{F}{\ast}=\mathcal{F}\Pi$ and $\Pi\mathcal{F}{\ast} =\mathcal{F}\Pi,$ where $\Pi$ are the canonical projections of $\mathcal{S} {\ast}{\prime}\left( \mathbb{R}{n}\right) $ or $\mathcal{W}{\prime }\left( \mathbb{R}{\text{c}}{n}\right) $ onto $\mathcal{S}{\prime}\left( \mathbb{R}{n}\right).$ We determine the Fourier transform of several finite part regularizations and of general thick delta functions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.