The Fourier transform of thick distributions (1909.03945v2)
Abstract: We first construct a space $\mathcal{W}\left( \mathbb{R}{\text{c}} {n}\right) $ whose elements are test functions defined in $\mathbb{R} _{\text{c}}{n}=\mathbb{R}{n}\cup\left{ \mathbf{\infty}\right} ,$ the one point compactification of $\mathbb{R}{n},$ that have a thick expansion at infinity of special logarithmic type, and its dual space $\mathcal{W}{\prime }\left( \mathbb{R}{\text{c}}{n}\right) ,$ the space of $sl-$thick distributions. We show that there is a canonical projection of $\mathcal{W} {\prime}\left( \mathbb{R}{\text{c}}{n}\right) $ onto $\mathcal{S} {\prime}\left( \mathbb{R}{n}\right).$ We study several $sl-$thick distributions and consider operations in $\mathcal{W}{\prime}\left( \mathbb{R}{\text{c}}{n}\right).$ We define and study the Fourier transform of thick test functions of $\mathcal{S}{\ast}\left( \mathbb{R}{n}\right) $ and thick tempered distributions of $\mathcal{S}{\ast}{\prime}\left( \mathbb{R}{n}\right).$ We construct isomorphisms [ \mathcal{F}{\ast}:\mathcal{S}{\ast}{\prime}\left( \mathbb{R}{n}\right) \longrightarrow\mathcal{W}{\prime}\left( \mathbb{R}{\text{c}}{n}\right) \,, ] [ \mathcal{F}{\ast}:\mathcal{W}{\prime}\left( \mathbb{R}{\text{c}} {n}\right) \longrightarrow\mathcal{S}{\ast}{\prime}\left( \mathbb{R} {n}\right) \,, ] that extend the Fourier transform of tempered distributions, namely, $\Pi\mathcal{F}{\ast}=\mathcal{F}\Pi$ and $\Pi\mathcal{F}{\ast} =\mathcal{F}\Pi,$ where $\Pi$ are the canonical projections of $\mathcal{S} {\ast}{\prime}\left( \mathbb{R}{n}\right) $ or $\mathcal{W}{\prime }\left( \mathbb{R}{\text{c}}{n}\right) $ onto $\mathcal{S}{\prime}\left( \mathbb{R}{n}\right).$ We determine the Fourier transform of several finite part regularizations and of general thick delta functions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.