Papers
Topics
Authors
Recent
Search
2000 character limit reached

Regularized Least-Mean-Square Algorithms

Published 22 Dec 2010 in stat.ME and stat.ML | (1012.5066v2)

Abstract: We consider adaptive system identification problems with convex constraints and propose a family of regularized Least-Mean-Square (LMS) algorithms. We show that with a properly selected regularization parameter the regularized LMS provably dominates its conventional counterpart in terms of mean square deviations. We establish simple and closed-form expressions for choosing this regularization parameter. For identifying an unknown sparse system we propose sparse and group-sparse LMS algorithms, which are special examples of the regularized LMS family. Simulation results demonstrate the advantages of the proposed filters in both convergence rate and steady-state error under sparsity assumptions on the true coefficient vector.

Citations (83)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.