Papers
Topics
Authors
Recent
2000 character limit reached

Applying centrality measures to impact analysis: A coauthorship network analysis

Published 22 Dec 2010 in cs.DL | (1012.4862v1)

Abstract: Many studies on coauthorship networks focus on network topology and network statistical mechanics. This article takes a different approach by studying micro-level network properties, with the aim to apply centrality measures to impact analysis. Using coauthorship data from 16 journals in the field of library and information science (LIS) with a time span of twenty years (1988-2007), we construct an evolving coauthorship network and calculate four centrality measures (closeness, betweenness, degree and PageRank) for authors in this network. We find out that the four centrality measures are significantly correlated with citation counts. We also discuss the usability of centrality measures in author ranking, and suggest that centrality measures can be useful indicators for impact analysis.

Citations (145)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.