Papers
Topics
Authors
Recent
2000 character limit reached

Connectivity properties of random interlacement and intersection of random walks

Published 21 Dec 2010 in math.PR | (1012.4711v2)

Abstract: We consider the interlacement Poisson point process on the space of doubly-infinite Zd-valued trajectories modulo time-shift, tending to infinity at positive and negative infinite times. The set of vertices and edges visited by at least one of these trajectories is the random interlacement at level u of Sznitman arXiv:0704.2560 . We prove that for any u>0, almost surely, (1) any two vertices in the random interlacement at level u are connected via at most ceiling(d/2) trajectories of the point process, and (2) there are vertices in the random interlacement at level u which can only be connected via at least ceiling(d/2) trajectories of the point process. In particular, this implies the already known result of Sznitman arXiv:0704.2560 that the random interlacement at level u is connected.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.