Optimal transport from Lebesgue to Poisson
Abstract: This paper is devoted to the study of couplings of the Lebesgue measure and the Poisson point process. We prove existence and uniqueness of an optimal coupling whenever the asymptotic mean transportation cost is finite. Moreover, we give precise conditions for the latter which demonstrate a sharp threshold at d=2. The cost will be defined in terms of an arbitrary increasing function of the distance. The coupling will be realized by means of a transport map ("allocation map") which assigns to each Poisson point a set ("cell") of Lebesgue measure 1. In the case of quadratic costs, all these cells will be convex polytopes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.