Papers
Topics
Authors
Recent
2000 character limit reached

Warped product Einstein metrics over spaces with constant scalar curvature

Published 15 Dec 2010 in math.DG | (1012.3446v1)

Abstract: In this paper we study warped product Einstein metrics over spaces with constant scalar curvature. We call such a manifold rigid if the universal cover of the base is Einstein or is isometric to a product of Einstein manifolds. When the base is three dimensional and the dimension of the fiber is greater than one we show that the space is always rigid. We also exhibit examples of solvable four dimensional Lie groups that can be used as the base space of non-rigid warped product Einstein metrics showing that the result is not true in dimension greater than three. We also give some further natural curvature conditions that characterize the rigid examples in higher dimensions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.