Papers
Topics
Authors
Recent
2000 character limit reached

Schur function expansions of KP tau functions associated to algebraic curves

Published 14 Dec 2010 in math-ph, hep-th, math.MP, and nlin.SI | (1012.3152v1)

Abstract: The Schur function expansion of Sato-Segal-Wilson KP tau-functions is reviewed. The case of tau-functions related to algebraic curves of arbitrary genus is studied in detail. Explicit expressions for the Pl\"ucker coordinate coefficients appearing in the expansion are obtained in terms of directional derivatives of the Riemann theta function or Klein sigma function along the KP flow directions. Using the fundamental bi-differential, it is shown how the coefficients can be expressed as polynomials in terms of Klein's higher genus generalizations of Weierstrass' zeta and P functions. The cases of genus two hyperelliptic and genus three trigonal curves are detailed as illustrations of the approach developed here.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.